Вариативный синтез схемы операционного усилителя с пониженным напряжением смещения нуля

В.Г. Манжула¹, И.Б. Пугачев², Н.Н. Прокопенко¹ ¹ФГБОУ ВПО «ЮРГУЭС», г. Шахты Ростовской обл. ²ФГБОУ ВПО «МГТУ им. Н.Э.Баумана», г. Москва

В современной аналоговой микроэлектронике широкое применение получили операционные усилители (ОУ) на основе, так называемых, «перегнутых каскодов» [1], которые стали основой более 30 серийных микросхем зарубежных (НА2520, НА5190, AD797, AD8631, AD8632, OP90 и др.) и российских (154УДЗ и др.) производителей. Типичным представителем такого решения является схема (рис.1.а), описанная в патенте США № 6.144.234 фирмы Canon. Как показано в [2] во многих ОУ с высокоимпедансным узлом, в том числе и на «перегнутом каскоде», не обеспечивается собственная компенсация погрешностей, связанных с конечной величиной коэффициента усиления по току базы применяемых транзисторов β . Это является причиной повышенных значений напряжения смещения нуля ОУ (U_{см}).

В настоящей работе рассматриваются варианты синтеза ОУ, обладающих эффектом собственной компенсации систематической составляющей U_{см} и его дрейфа в условиях температурных и радиационных воздействий.

Рис. 1 Классический ОУ на основе «перегнутого» каскода (а) и обобщенная схема предлагаемого ОУ (б)

В предлагаемой обобщенной схеме ОУ (рис. 1.б) [3] в статическом режиме при $u_{BX} = 0$ нулевое значение напряжения смещения нуля ОУ обеспечивается в том случае, если коллекторные токи транзисторов VT5 и VT7 равны друг другу (при нулевом входном токе буферного усилителя (БУ)). Если статические значения $I_{\kappa5} \neq I_{\kappa7}$, то это вызывает необходимость подачи между входами Bx.1 и Bx.2 ОУ напряжения U_{cM} , которое приведет к равенству $I_{\kappa5} = I_{\kappa7}$ за счет изменения токов I₂ и I₃.

Взаимосвязь $I_{\kappa 5}$ и $I_{\kappa 7}$ можно установить с учетом следующих токовых соотношений в схеме рис. 1.б, вытекающих из первого закона Кирхгофа:

$$I_{\kappa4} = \alpha_4 I_2; \ I_{\kappa5} = (I_3 - I_{\kappa10})\alpha_5;$$

$$I_{\kappa11} = I_{\kappa4} - I_{\delta} - I_{\delta}^* = I_{311} - I_{\delta};$$

$$I_{311} = I_{\kappa4} - I_{\delta}^*;$$

$$I_{39} = I_{311} = I_{\kappa4} - I_{\delta}^*;$$

$$I_{\kappa9} = I_{39} - I_{\delta} = I_{\kappa4} - I_{\delta} - I_{\delta}^* = I_{37};$$

$$I_{\kappa7} = I_{37} - I_{\delta} = I_{\kappa4} - 2I_{\delta} - I_{\delta}^*;$$

$$I_{310} = 2I_{\delta}; \ I_{\kappa10} = 2I_{\delta} - I_{\delta}^*;$$

$$I_{\kappa5} = \alpha_5 I_3 - \alpha_5 2I_{\delta} + \alpha_5 I_{\delta}^*;$$

$$I_{\kappa7} = \alpha_4 I_2 - 2I_{\delta} + I_{\delta}^*,$$
(1)

где α_4 , $\alpha_5 \approx 1$ - коэффициенты усиления по току эмиттера транзисторов VT4 и VT5;

 I_{δ} - ток базы транзисторов VT7, VT9, VT11 при одинаковых токах эмиттеров;

 I_{δ}^* - ток базы транзистора VT10 ($I_{\delta}^* \ll I_{\delta}$).

Из выражений (1) следует, что разность токов в высокоимпедансном узле «А» при его коротком замыкании на эквипотенциальную общую шину составляет

$$\Delta I = I_{\kappa 5} - I_{\kappa 7} = I(\alpha_5 - \alpha_4) + 2I_{\delta}(1 - \alpha_5) + 2I_{\delta}^*, \qquad (2)$$

где $I = I_2 = I_3$. Так как $\alpha_5 = \alpha_4$, то

$$\Delta I = 2I_{\delta}(1 - \alpha_{5}) + 2\frac{I_{\delta}}{\beta_{10}} = 2I_{\delta}\left[(1 - \alpha_{5}) + \beta_{10}^{-1}\right],$$
(3)

где $\beta_{10} >> 1$ - коэффициент передачи по току базы транзистора VT10.

Разность токов ΔІ приводится к входу ОУ через эквивалентную крутизну для дифференциального сигнала

$$S_{\Sigma} = \frac{\Delta I}{U_{cV}} \,. \tag{4}$$

При этом напряжение смещения нуля ОУ будет равно

$$U_{CM} = \frac{\Delta I}{S_{\Sigma}}.$$
 (5)

Можно показать, что для схемы классического ОУ (рис.1.а)

$$U_{CM}^* = \frac{\Delta I^*}{S_{\Sigma}^*} = \frac{4I_{\delta}}{S_{\Sigma}^*}.$$
 (6)

Таким образом, при равенстве значений крутизны $S_{\Sigma}^* = S_{\Sigma}$ в предлагаемом ОУ напряжение смещения нуля уменьшается по сравнению с классической схемой в N_c-раз, где

$$N_{c} = \frac{U_{cM}^{*}}{U_{cM}} = \frac{2}{(1 - \alpha_{5}) + \beta_{10}^{-1}} >> 1$$
(7)

или после преобразований

$$N_{c} = \frac{2}{\frac{1}{\beta_{5}} + \frac{1}{\beta_{10}}} >> 1.$$
(8)

Если положить, что $\beta = \beta_5 = \beta_{10}$, то выигрыш по величине U_{см} составляет

$$N_c = \beta >> 1. \tag{9}$$

В работах [4, 5] показано, что существуют различные варианты реализации базовых функциональных узлов ОУ с архитектурой, представленной на рис.16. Предложенная в работе [6] функциональная модель и рассмотренный в работе [7] алгоритм синтеза схемотехнических решений IP модулей СФ-блоков позволил реализовать ряд модификаций обобщенной схемы (рис.16).

На рис. 2 представлены варианты построения ОУ (рис. 1.б), в которых входной преобразователь напряжение-ток (ПНТ) реализован на основе: «перегнутого» параллельнобалансного каскада (рис. 2.а), классического параллельно-балансного каскада (рис.2.б) и комплементарного дифференциального каскада на n-p-n и p-n-p транзисторах (рис. 2.в). Тип используемого входного узла ПНТ определяется разработчиком IP модуля.

Рис. 2 Варианты реализации обобщенной схемы на основе: «перегнутого» параллельнобалансного каскада (а), классического параллельно-балансного каскада (б) и комплементарного дифференциального каскада на n-p-n и p-n-p транзисторах (в)

На рис. 3 представлены схемы классического ОУ (рис. 3.а) и предлагаемого ОУ с аналогичным схемотехническим решением элемента ПНТ (рис. 3.б) в среде компьютерного моделирования PSpice на моделях интегральных транзисторов ФГУП НПП «Пульсар». Моделирование ОУ показало, что напряжение смещения нуля ОУ (рис. 3.а) составляет 1,8

мВ, тогда как у предлагаемого ОУ (рис. 3.б) значение U_{cm} не превысило 0,15мВ, т.е. имеется улучшение U_{cm} более чем на порядок.

Рис. 3 Схема классического ОУ (а) и предлагаемого ОУ (б) в среде компьютерного моделирования PSpice на моделях интегральных транзисторов ФГУП НПП «Пульсар»

На рис. 4 показаны амплитудно-частотные характеристики (АЧХ) коэффициента усиления по напряжению сравниваемых ОУ.

Таким образом, компьютерное моделирование подтверждает результаты качественного анализа. В предлагаемом ОУ без значительного увеличения числа элементов существенно повышаются статическая точность и коэффициент усиления по напряжению в сравнении с базовой схемой. Варианты реализации ОУ на основе различных типов ПНТ позволяют разработчику синтезировать IP модуль ОУ с заданными точностными и динамическими характеристиками с учетом условий эксплуатации.

Литература:

1. Матавкин, В.В. Быстродействующие операционные усилители [Текст] / В. в. Матавкин. – М.: Радио и связь, 1989. - 74 с.

2. Прокопенко, Н. Н. Способ повышения стабильности нуля аналоговых микросхем с высокоимпедансным узлом в условиях температурных и радиационных воздействий [Текст] / Н. Н. Прокопенко, А. И. Серебряков, П.С. Будяков // Проблемы разработки перспективных микро- и наноэлектронных систем : сб. науч. трудов всерос. науч.- практ. конф. – М.: ИППМ РАН, 2010. – С. 295–300.

3. Прецизионный операционный усилитель [Текст] : пат. 2368064 Рос. Федерация: МПК H03F 3/45 / Н.Н. Прокопенко, В.Г. Манжула, А.И. Серебряков ; заявитель и патентообладатель Южно-Российский государственный университет экономики и сервиса. - № 2008104193/09(004569); заявл. 04.02.2008; опубл. 20.09.2009, Бюл. № 26.

4. Манжула, В.Г. Синтез неизбыточных функциональных схем микроэлектронных систем в корпусе (SiP) [Текст] / В. Г. Манжула // Системы управления и информационные технологии. – 2011. – № 3 (45). – С. 41 - 44.

5. Крутчинский, С.Г. Собственная компенсация в радиационно-стойких микросхемах на основе базового матричного кристалла АБМК_1_3 [Текст] / С.Г. Крутчинский, Н.Н. Прокопенко // Науч.-техн. ведомости СПбГПУ. Информатика, телекоммуникации, управление. – 2012. – № 2. – С. 137 – 144.

6. Манжула, В.Г. Исключение структурной, функциональной и схемотехнической избыточности при синтезе аналоговых систем в корпусе [Текст] / В.Г. Манжула // Научнотехнический вестник Поволжья. – 2011. – № 2. – С. 123 – 127.

7. Манжула, В.Г. Информационная поддержка синтеза схемотехнически интегрированных принципиальных электрических схем [Текст] / В.Г. Манжула // Науч.-техн. ведомости СПбГПУ. Информатика, телекоммуникации, управление. – 2012. – № 2. – С. 144 – 151.

Статья подготовлена при выполнения НИР по теме «Разработка и исследование аналоговой электронной компонентной базы нового поколения для систем связи, радиоэлектроники и технической кибернетики» в рамках федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009 - 2013 годы»