

Функциональный метод параметризации модели Вольтерра-Винера

В.Н. Таран^{1,2}, Е.Ю. Кисловский¹

¹ Донской государственный технический университет, г. Ростов-на-Дону

² Донской казачий государственный институт пищевых технологий и бизнеса (филиал) МГУТУ им. К.Г. Разумовского (ПКУ), г. Ростов-на-Дону

Аннотация: В работе представлено описание метода параметризации ядер ряда Вольтерра-Винера с использованием функциональной производной. Метод подробно рассматривается на примере нелинейного дифференциального уравнения Риккати и подтверждается результатом решения задачи идентификации.

Ключевые слова: функциональный ряд Вольтерра-Винера, параметризация, уравнение Риккати, системная идентификация.

Введение

B объекты настоящее время исследования теории управления значительно усложняются, что связано с ростом числа компонентов, взаимосвязей между ними, а также их нелинейными характеристиками. Этой тенденцией обусловлено более широкое применение непараметрических моделей [1-3]. Их отличительной чертой является отсутствие явной структуры и бесконечное число параметров. Использование такой модели позволяет аппроксимировать поведение практически любого объекта. Однако, эти модели имеют преимущество лишь для тех случаев, где нет необходимости получении прогноза после изменения В каких-либо характеристик исследуемого объекта. Очевидно, что процессы проектирования или модернизации систем управления, будут эффективнее с использованием моделей, позволяющих варьировать параметры, отражающие физический смысл [4-6]. В связи с этим, задачи преобразования непараметрических моделей к параметрическому виду имеют важное В центре работы прикладное значение. внимания данной непараметрическая модель в виде функционального ряда Вольтерра-Винера. Зачастую для параметризации такой модели используют метод испытательных сигналов [7,8]. Такой подход весьма трудоемкий для

определения ядер выше второго порядка, и к тому же метод усложняется при необходимости получения результата во временном диапазоне. В работе предлагается метод параметризации ряда Вольтерра-Винера с помощью функциональной производной.

Постановка задачи

Рассмотрим систему с одним входом и одним выходом, которая описывается нелинейным дифференциальным уравнением. Для удобства работы с последующим примером предположим, что данное уравнение устанавливает связь входного сигнала *x*, выходного сигнала *y*, а также производной выходного сигнала *y*'.

$$F(x, y, y') = 0,$$
 (1)

Известно, что нелинейная система может быть аппроксимирована функциональным рядом Вольтерра-Винера:

$$y(t) = h_0(t) + \int_0^\infty h_1(t-\tau) x_1(\tau) d\tau + \int_0^\infty \int_0^\infty h_2(t-\tau_1, t-\tau_2) x_1(\tau_1) x_1(\tau_2) d\tau_1 d\tau_2 + \dots,$$
(2)

где h_0 - определяет начальные условия, а ядра $h_1, h_2...h_n$ - весовые функции системы. Задача параметризации заключается в определении ядер $h_1, h_2...h_n$ выраженных с помощью параметров системы (1).

Для получения функциональной производной будем использовать следующее определение:

$$\frac{\delta y}{\delta x} = \lim_{\substack{\Delta t \to 0 \\ \max |\delta x| \to 0}} \frac{y[x + \delta x] - y[x]}{\int_{\Delta t} \delta x dt},$$
(3)

Ограничиваясь линейным и квадратичным ядром ряда (2), дифференциал будет иметь вид:

$$y[x + \delta x] = h_0(t) + \int h_1(t - \tau) [x(\tau) + \delta x(\tau)] d\tau +$$

+ $\iint h_2(t - \tau_1, t - \tau_2) [x(\tau_1) + \delta x(\tau_1)] [x(\tau_2) + \delta x(\tau_2)] d\tau_1 d\tau_2,$

Раскроем скобки в подынтегральном выражении и используем свойства интегралов, тогда функциональная производная примет вид:

$$\begin{split} \frac{\delta y}{\delta x} &= \lim_{\Delta t \to 0} \left(\frac{\int h_1(t-\tau) \delta x(\tau) d\tau}{\int_{\Delta t} \delta x(\tau) d\tau} + \frac{\iint h_2(t-\tau_1, t-\tau_2) x(\tau_1) \delta x(\tau_2) d\tau_1 d\tau_2}{\int_{\Delta t} \delta x(\tau) d\tau} + \frac{\iint h_2(t-\tau_1, t-\tau_2) \delta x(\tau_1) x(\tau_2) d\tau_1 d\tau_2}{\int_{\Delta t} \delta x(\tau) d\tau} \right), \end{split}$$

Применяя теорему о среднем, получим:

$$\frac{\delta y}{\delta x} = h_1(t) + \int h_2(t - \tau_1, t - \tau_2) x(\tau_1) d\tau_1 + \int h_2(t - \tau_1, t - \tau_2) x(\tau_2) d\tau_2,$$
(4)

Далее можно получить линейное ядро путем поиска функциональной производной от исходного уравнения (1) и подстановкой в него выражений (2) и (4). Алгоритм поиска квадратичного ядра аналогичен рассмотренному линейному случаю и требует определения функциональной производной второго порядка.

Параметризация на примере нелинейного дифференциального уравнения Риккати

Поскольку вывод квадратичного ядра будет весьма объемным, а его верификация затратной с точки зрения вычислительных мощностей, данный метод будет рассмотрен для линейного ядра ряда Вольтерра-Винера.

Пусть динамика системы определяется нелинейным дифференциальным уравнением Риккати:

$$\frac{dy}{dt} + ay(t) + by(t)^2 = x(t)$$
(5)

Руководствуясь определением (2) и свойством линейности, функциональную производную от уравнения (5) можно записать в форме:

$$\frac{d}{dt}\frac{\delta y}{\delta x} + a\frac{\delta y}{\delta x} + 2by(t)\frac{\delta y}{\delta x} = \frac{\delta}{\delta x}x(t)$$
(6)

Даже учитывая только лишь ядра первого и второго порядка, полная запись уравнения (6) будет достаточно объемной, поэтому запишем каждое слагаемое этого уравнения отдельно:

$$\frac{d}{dt}\frac{\delta y}{\delta x} = \frac{d}{dt} \Big(h_1(t) + \int h_2(t - \tau_1, t - \tau_2) x(\tau_1) d\tau_1 + \int h_2(t - \tau_1, t - \tau_2) x(\tau_2) d\tau_2 \Big), \tag{7}$$

$$a\frac{\delta y}{\delta x} = a \Big(h_1(t) + \int h_2(t - \tau_1, t - \tau_2) x(\tau_1) d\tau_1 + \int h_2(t - \tau_1, t - \tau_2) x(\tau_2) d\tau_2 \Big), \tag{8}$$

$$2by(t)\frac{\delta y}{\delta x} = 2b\left(h_0(t) + \int h_1(t-\tau)x_1(\tau)d\tau + \int \int h_2(t-\tau_1,t-\tau_2)x_1(\tau_1)x_1(\tau_2)d\tau_1d\tau_2\right)^*$$

$$*\left(h_1(t) + \int h_2(t-\tau_1,t-\tau_2)x(\tau_1)d\tau_1 + \int h_2(t-\tau_1,t-\tau_2)x(\tau_2)d\tau_2\right),$$
(9)

Поиск функциональной производной правой части уравнения (6) построим аналогично выражениям в левой части, но с использованием фильтрующего свойства дельта- функции:

$$x(\tau) = \int_{-\infty}^{+\infty} \delta^*(t-\tau) x(t) dt ,$$

Чтобы различать знак дифференциала и дельта - функцию, последняя обозначена как δ^* . Таким образом, в результате преобразований получим:

$$\frac{\delta x(t)}{\delta x(\tau)} = \lim_{\substack{\Delta t \to 0 \\ \max |\delta x| \to 0}} \frac{\int \delta^*(t-\tau) \delta x(t) dt}{\int_{\Delta t} \delta x(t) dt} = \delta^*(t-\tau),$$

Приравняем входное воздействие к нулю:

$$\frac{d}{dt}\frac{\delta y}{\delta x}\Big|_{x=0} + a\frac{\delta y}{\delta x}\Big|_{x=0} + 2by(t)\frac{\delta y}{\delta x}\Big|_{x=0} = \frac{\delta}{\delta x}\Big|_{x=0}x(t)$$
(10)

Подставим (7), (8) и (9) в уравнение (10), тогда, учитывая, что выходной сигнал y(t) тоже будет отсутствовать при x(t)=0, выражение (6) примет вид:

$$\frac{d}{dt}h_1(t) + ah_1(t) = \delta^*(t-\tau)$$

Операторную форму этого уравнения можно выразить следующим образом:

$$pW(p) + aW(p) = 1,$$

Линейная часть системы будет описываться передаточной функцией вида:

$$W(p) = \frac{1}{p+a},\tag{11}$$

Верификацию предложенного метода выполним, сравнивая (11) с результатом решения задачи системной идентификации. Необходимые для идентификации входные и выходные данные можно получить с помощью имитационной которой системы (5)модели, В на ВХОД подается дельта-подобный импульс. Требуемую для дальнейшей оценки параметров структуру найдем методом малых отклонений [9,10]. Не имея цели подробно описывать эти процедуры в рамках данной работы, приведем лишь их результаты. Так для слабонелинейной модели (5) с параметрами а=0.01 и b=0.001, результатом идентификации стала передаточная функция:

$$W(p) = \frac{1}{p + 0.01095},\tag{12}$$

Структура полученной модели совпадает с (11), а погрешность результата оценки параметра *а* методом наименьших квадратов составляет 9,5%.

На «рис.1» представлены импульсные переходные характеристики: кривая синего цвета - исходная нелинейная модель, зеленая - модель, полученная в результате параметризации, красная - результат идентификации.

Рис. 1. – Импульсные переходные характеристики

Для оценки погрешностей моделей (11) и (12) относительно результатов имитационного моделирования, рассчитаем среднеквадратическое отклонение (СКО), выраженное в относительных единицах:

$$E_{\%} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{X_i - A_i}{X_i} 100 \right)^2},$$

где X_i - отсчеты исходной нелинейной модели (эталонное значение), A_i-отсчеты моделей (11) и (12), N - количество отсчетов.

Погрешность модели, полученной в результате идентификации, составила 17,39%, а параметризованной модели 8,38%.

Заключение

Рассмотренный метод позволяет привести непараметрическую модель в виде ряда Вольтерра-Винера к параметрическому виду. На примере слабонелинейной модели показано, что параметризованная данным методом модель обеспечивает погрешность, не превышающую ошибку модели, полученной в результате идентификации.

Литература

1. Иконников О.А., Первушин В.Ф. Исследование непараметрических моделей динамических систем // Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева. 2013. №1. С. 36-40.

2. Таран В.Н., Кисловский Е.Ю., Цыбрий И.К., Липянин Д.Е. Метод измерения амплитудно-частотной характеристики с использованием широкополосного сигнала // Инженерный вестник Дона, 2018, №2. URL: ivdon.ru/ru/magazine/archive/N3y2020/6364.

3. Wang Y., Han J., Zhou W. Third-order Volterra kernel identification technique in aerodynamics // Applied Mechanics and Materials, vols. 52-54. 2011. pp. 618-623.

4. Браганец С.А., Гольцов А.С., Савчиц А.В. Идентификация математической модели главного золотника для системы диагностики и адаптивного управления открытием направляющего аппарата // Инженерный вестник Дона, 2013, №4. URL: ivdon.ru/ru/magazine/archive/n4y2013/1906.

5. Матвеев В.В., Кисловский Е.Ю., Мильченко Д.Н., Распопов В.Я., Телухин С.В., Погорелов М.Г., Лихошерст В.В. Система сопровождения подвижных объектов на МЭМС-гироскопах // Мехатроника, автоматизация, управление. 2019. №7. С. 437-442.

6. Шумихин А.Г., Бояршинова А.С. Параметрическая идентификация систем управления с обратной связью на основе нейросетевого моделирования процессов их функционирования // Инженерный вестник Дона, 2017, №2 URL: ivdon.ru/ru/magazine/archive/n2y2017/4124.

7. Boyd S.P., Chang Y.S., Chua L.O. Measuring Volterra Kernels, IEEE Transactions on Circuits and Systems, vol. CAS-30, №8, 1983. pp. 571-577.

8. Таран А.Н., Таран В.Н. Использование сплайновых рядов Вольтерра-Винера при анализе нелинейных электрических цепей // Радиотехника и электроника. 2014. №7. С. 702-710.

9. Антонова А.М., Воробьев А.В., Матвеев А.С., Орлов А.С. Использование метода малых отклонений для анализа эффективности тринарных парогазовых установок // Известия Томского политехнического университета. 2013. №4. С. 47-52.

10. Бесекерский В.А., Попов Е.П. Теория систем автоматического управления. Спб.: Профессия, 2003. 752 с.

References

1. Ikonnikov O.A., Pervushin V.F. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva. 2013. №1. pp. 36-40.

2. Taran V.N., Kislovskiy E.Yu, Tsibry I.K., Lipyanin D.E. Inzhenernyj vestnik Dona, 2018, №2. URL: ivdon.ru/ru/magazine/archive/n3y2020/6364

3. Wang Y., Han J., Zhou W. Applied Mechanics and Materials, vols. 52-54. 2011. pp. 618-623.

4. Braganec S.A., Gol'cov A.S., Savchic A.V. Inzhenernyj vestnik Dona, 2013, №4. URL: ivdon.ru/ru/magazine/archive/n4y2013/1906

5. Matveev V.V., Kislovskiy E.Yu., Mil'chenko D.N., Raspopov V.Ja., Teluhin S.V., Pogorelov M.G., Lihosherst V.V. Mehatronika, avtomatizacija, upravlenie. 2019. №7. pp. 437-442.

6. Shumihin A.G., Bojarshinova A.S. Inzhenernyj vestnik Dona, 2017, №2. URL: ivdon.ru/ru/magazine/archive/n2y2017/4124.

7. Boyd S.P., Chang Y.S., Chua L.O. IEEE Transactions on Circuits and Systems, vol. CAS-30, №8, 1983. pp. 571-577.

8. Taran A.N., Taran V.N. Radiotehnika i jelektronika. 2014. №7. pp. 702-710.

9. Antonova A.M., Vorob'ev A.V., Matveev A.S., Orlov A.S. Izvestija Tomskogo politehnicheskogo universiteta. 2013. №4. pp. 47-52.

10. Besekerskij V.A., Popov E.P. Teorija sistem avtomaticheskogo upravlenija [Theory of automatic control systems]. Spb.: Professija, 2003. 752 p.