×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Analysis of the feasibility of using fractional-degree regulators in a control system of parallel robot

    within the framework of the conducted research, the task of controlling a robot of a parallel structure was considered. This paper presents a model of a 3-RPR type flat parallel robot in the Matlab package, developed for conducting computational experiments. Implementation of two types motion trajectories have been simulated in order to determine the optimal structure of the position regulators of the drive joint used in the robot control system. Six structure of regulators were compared: three classical ones: PD, PID, PDD and three of their fractional-degree analogues: FOPD, FOPID, FOPDD. The FOMCON tool was used to model fractional-degree regulators. The best results for type 3-PPR robot were shown by a control system with a FOPID regulator, which indicates the expediency of using fractional-degree regulators to control parallel robots.

    Keywords: parallel robot, inverse kinematics problem, 3-RPR robot, computational experiment, working out the trajectory of movement, control system accuracy, fractional-degree regulator, parametric optimization of the regulator, comparative modeling, FOMCON tool

  • About the development of a hybrid intelligent control unit for a stepper extreme controller

    The aim of the work is to increase the productivity of the iron ore concentrate dehydration process. In the course of previous research, an automated system with individual control of each vacuum filter technological parameters was developed. In this paper, it is proposed to supplement this system of an extreme step regulator hybrid intelligent control unit. A structural and functional scheme and an algorithm for the functioning of the control system have also been developed. The implementation of the developed control system will improve the productivity of the vacuum filter, reduce the wear of the actuators, reduce the specific consumption of energy resources used, and save the financial resources of the enterprise. The proposed control system can be adapted for a large class of technological units of a similar principle of operation used in various industries.

    Keywords: iron ore concentrate dehydration, disk vacuum filter, artificial neural network, fuzzy neural network, automated control system, individual regulation, extreme regulator, vacuum, pulp density, vacuum filter productivity sludge moisture